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1. The dissipation of kinetic energy represents one of the funda- 
mental characteristics of a turbulent flow 

E = 2vDik2, 

where v ia the kinematic viscositg, Vi the velocity field and Dik 
the deformation tensor of a particle of liquid. The uuantity E, as well 
as the velocity, depends on the coordinates and time in a random fashion. 

In the work of Kolmogorov [lf , two siailarits hypotheses were intro- 
duced, concerning the structure of turbulent flow at large Reynolds 
numbers. According to the first hypothesis, the structure of a turbulent 
flow, on a scale sufficiently small in comparison to the characteristic 
external scale of turbulence L, is determined by two parameters; the 
average dissipation of energy <s>, and v. According to the second 
hypothesis, in the so-called inertial distance interval 

.L > r > I, Ez v % <E)--‘I4 (2) 

(1, is the internal scale of the turbulence [II), essentially only the 
parameter < E> remains. Based on the hypothesis of similarity, a series 
of results were obtained, the most important one being the “213 law” of 
Kolmogorov-Obukhov [1.2] and its analogy in spectral terminology, the 
“5f3 law” 

E (p) = C <~)‘/a p-% (I,-” > p > L-‘) (3) 
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where E(p) is the 
wave number and C is 
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spectral density of the kinetic energy, p is the 
a constant. 

Boon after the origin of the similarity concept of turbulence, Landau 
[31 pointed out the necessity of taking into account the variations of 
E, related to macroscopic movement. The marked refinement of the similar- 
ity hypothesis taking into account the statistical nature (variability) 
of the dissipation of energy in a turbulent flow is discussed in [41 
and [51. In a somewhat different manner, the same idea of taking into 
account the variability of the dissipation of energy is used in the pre- 
sent article, which leads to the following, at first glance paradoxical, 
results: (a) similarity generally “worsens” in proportion to the pene- 
tration into the smaller scales; (b) the velocity field. sufficiently 
smooth (in the sense of the existence of higher derivatives), in indi- 
vidual applications exhibits peaks after statistical averaging (the mean 
square values of sufficiently high derivatives go to infinity). 

2. In [4,51 is introduced the concept of a “pure” statistical 
ensemble with a fixed value for I, which is the energy dissipation, 
averaged over a sphere of radius T. The similarity hypothesis for the 
“pure” ensemble is formulated and the expression for the structural 
functions for the velocity field is written in function of the distance 
r. For the “mixed” (complete) ensemble, the corresponding equations are 
obtained by averaging over different values of E(r), for which L4.51 
one takes the logarithmic-normal law of distribution with dispersion de- 
pending on the distance t-. 

In the present article, it will be more convenient to use a somewhat 
different definition of a “pure” ensemble. For describing turbulence in 
fixed (Eulerian) coordinates, the zones, variably saturated by dissipa- 
tion, rush past the observer who is measuring the velocity at fixed 
points. It is natural to assume that the structural functions of the 
velocity field, corresponding to the distance r, are determined by 
energy dissipation averaged over a region with dimensions much larger 
than r, so that it is possible to “accumulate statistics”. l By “pure” 
will be understood the ensemble with the fixed quantity E (the enerw 
dissipation), averaged over the region with dimensions sufficiently 
large compared with the distance r in which we are interested. The 
“mixed” ensemble is the superposition of “pure” ensembles with a certain 
(independent of r) statistical distribution, satisfying the following 
condition of orthogonality: 

l If the structural functions of multiple points are considered, then 
r is understood to be the distance between points with maximum 
separation. 
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00 

s j (E) dE= 1 (4) 
0 

It is possible that analogous concepts were implied in M, where 
the authors reached the conclusion that the variability of energy dis- 
sipation mildly affects the form of the distribution of kinetic energy 
over the spectrum, including the region of large wave numbers. However, 
such a conclusion is related only with a special choice of form of 
spectral energy density for a “pure” ensemble: two exponential laws, 
matched in the region of the interior scale of turbulence. It is shown 
below that in other initial spectra, for a “pure” ensemble, the vari- 
ability of energy dissipation substantially affects the form of spectral 
energy in a “mixed” ensemble, especially in the region of large wave 
numbers. 

3. From considerations of similarity, the following expression for 
the spectrum of energy in the “pure” ensemble can be written: 

E (p) = &“Jp+ cp (p% t) (II = v ‘W’~, pL > 1) (5) 

The function q(x), which may be considered to be universal (inde- 
pendent of the macroscopic properties of the flow), satisfies the follow- 
ing conditions: 

co 

s x-l”‘p (2) dx = 1) lim cp (2) = C 
0 

X-+0 
(6) 

The first condition is derived from the normalization of the spectrum 

03 
2v 

s P'E (~1 dp = E (7) 
0 

The second condition points out that, in the inertial interval of 
wave numbers, expression (5) must transform into the 15/3 law”. 

For the “mixed” ensemble, averaging (5) with respect to E weighted 

by f(E), we obtain 

<E (PI> = <e>“ap-“2(p* (P2VGJ) (To = v “2 <E>_“Z, pL > 1) 

‘p* (p%qJ = <l?/“qJ (P%T)> <e>-“, c, = li$ q*(x) = c <e”S> <&>-“a (8) 

(the function 9 (x) satisfies the first condition in (6)). The dis- 
tribution f(E) Depends upon macroscopic properties of the flow, and, in 
this respect, the function Q,(Z) and the spectrum <E(p)> do not appear 
to be universal. It can be observed from (8) that the “5/3 law” always 
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OCCUrS iI3 the inertial interval Of WaV8 numbers; however, the constant 

12 may depend upon macroscopic properties of the flow.* Further, if the 
S~eCtI’UUi in the pure 8nSembl8 has an exponential asymptote in the region 

of large wave numbers, then this same asymptote (up to a nonuniversal 

Constant) will also have spectra in the "mixed" ensemble. This case, too, 

Was considered in c61 above, where the exponent in the asymptote is taken 

to be equal to -7 (Deisenberg*s modulus t83). It seems more natural to 

assume that in the "pure" 8nS8mbl8, the velocity field has in the mean- 

square enough high derivatives. Then the spectrum in the "pure" ensemble 

must decrease in the region of large wave numbers faster than an arbi- 

trary exponent; and the spectrum in the "mixed" ensemble will not haV8 

universal aSympt&iC behavior in the region of large wave numbers 

(even up to a constant). In this respect there occurs derivation (a) 

formulated at the end of Section 1. Derivation (b) follows from the fact 

that the function Q,(X) may have an exponential asymptote even if Q(X) 

decreases faster than any power (or Q,(X) may decrease with a smaller 

exponent). Both of these derivations are illustrated below in a conarete 

example. 

Note that in some ranges of the variable E (for a constant average 

value CL>) the distribution f(f) may poss8ss universality. Considering 

this, derivation (a) should be formulated more cautiously; the denend- 

ence of the characteristics of turbulence (especially the energy 

spectrum) upon the probability distribution for E is more marked as one 

reaches ever smaller dimensional Scales. The experimental investigation 

of the distribution function f(e) would be interesting. 

4. Xn 191 is derived the asymptotic behavior of an energy SRectrum 

in the region of large wave numbers, which combines in a natural manner, 

with the '3/3 law"; on the basis of such a combination, the fOrmUla for 

an energy spectrum throu~out the interval pL >> 1 was presented in c91; 

it may be written in the form 

E (p) = Cv ‘J3f’lSp-‘i8 exp {- up% T) 
i 

a% 2v’1- 
C=qqq, as=: 3 1 

where rb) is the gamma function. We will accept this formula as the 

initial spectral density in the "pure@' ensemble. Instead of the dis- 

tribution f(f), it is more convenient to introduce the distribution of 

* Note that, for the Lagrangean description of turbulence, the second 

moments of velocity and the distances between fluid particles in the 

corresponding inertial interval of time depend linearly upon dissipa- 

tion; therefore the corresponding constants turn out to be universal 

[71 . 
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the quantity y = T< T>-~, which, for the sake of simplicity in CalCUla- 
tion, we represent by 

ua+1 

The only parameter characterizing the distribution P(y) and, con- 
sequently, the macroscopic properties of turbulent flow, is the Quantity 
a. relating the average value and dispersion of dissipation by the 
formulas 

<[E - <&>I’> 2 (2u - 3) 
<c>2 = (a - 2) (a - 3) (11) 

In order for the average value of dissipation to exist, it is neces- 
sary that a > 1. For the existence of dissipation dispersion (which, in 
general, is not necessarily finite in the “mixed” ensemble), it is 
necessary that a > 3. 

Averaging (9) we get 

c, <Ey*p-6f” 
CE (p)> = [i + p (p~o)2]“-‘/’ 

c 
* 

= cr (a - ‘13 

m”“r (a - 1) ’ 
$ = ldl’, m=a(a- 1) 

(12) 

(13) 

Equation (12) clearly illustrates how the formulas are derived. 
Notice that for a = 3 a power asymptote of the Heisenberg model (exponent 
= -7) is derived. 
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